Multi-level hp-adaptivity and explicit error estimation

نویسندگان

  • Davide D'Angella
  • Nils Zander
  • Stefan Kollmannsberger
  • Felix Frischmann
  • Ernst Rank
  • Andreas Schröder
  • Alessandro Reali
چکیده

Correspondence: [email protected] Chair for Computation in Engineering, Technische Universität München, Arcisstraße 21, 80333 München, Germany Full list of author information is available at the end of the article Abstract Recently, a multi-level hp-version of the Finite Element Method (FEM) was proposed to ease the difficulties of treating hanging nodes, while providing full hp-approximation capabilities. In the original paper, the refinement procedure made use of a-priori knowledge of the solution. However, adaptive procedures can produce discretizations which are more effective than an intuitive choice of element sizes h and polynomial degree distributions p. This is particularly prominent when a-priori knowledge of the solution is only vague or unavailable. The present contribution demonstrates that multi-level hp-adaptive schemes can be efficiently driven by an explicit a-posteriori error estimator. To this end, we adopt the classical residual-based error estimator. The main insight here is that its extension to multi-level hp-FEM is possible by considering the refined-most overlay elements as integration domains. We demonstrate on several twoand three-dimensional examples that exponential convergence rates can be obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Level hp-Adaptivity: High-Order Mesh Adaptivity without the Difficulties of Constraining Hanging Nodes

hp-refinement schemes have proven to be an excellent approach to locally adapt the accuracy of a Finite Element discretization. However, the implementation of hp-adaptivity remains challenging as hanging nodes, edges, and faces have to be constrained to ensure compatibility of the shape functions. For this reason, most hp-code frameworks restrict themselves to 1-irregular meshes to ease the imp...

متن کامل

An hp-Adaptive Minimum Action Method Based on a Posteriori Error Estimate

In this work, we develop an hp-adaptivity strategy for the minimum action method (MAM) using a posteriori error estimate. MAM plays an important role in minimizing the Freidlin-Wentzell action functional, which is the central object of the Freidlin-Wentzell theory of large deviations for noise-induced transitions in stochastic dynamical systems. Because of the demanding computation cost, especi...

متن کامل

Energy Norm a Posteriori Error Estimation of Hp - Adaptive Discontinuous Galerkin Methods for Elliptic Problems

In this paper, we develop the a posteriori error estimation of hp-version interior penalty discontinuous Galerkin discretizations of elliptic boundary-value problems. Computable upper and lower bounds on the error measured in terms of a natural (mesh-dependent) energy norm are derived. The bounds are explicit in the local mesh sizes and approximation orders. A series of numerical experiments il...

متن کامل

A posteriori error estimation for hp-adaptivity for fourth-order equations

A posteriori error estimates developed to drive hp-adaptivity for second-order reaction-diffusion equations are extended to fourth-order equations. A C1 hierarchical finite element basis is constructed from HermiteLobatto polynomials. A priori estimates of the error in several norms for both the interpolant and finite element solution are derived. In the latter case this requires a generalizati...

متن کامل

Adaptive Multi-Mesh hp-FEM for Linear Thermoelasticity

We present a new adaptive hp-FEM for linear thermoelasticity where each displacement component and the temperature are approximated on different meshes which are equipped with individual energy-based adaptivity mechanisms. We demonstrate that the multimesh hp-FEM can capture individual behavior of every solution component more efficiently than standard hp-FEM. AMS subject classification: 35B50,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Adv. Model. and Simul. in Eng. Sciences

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2016